Using PDE’s for Noise Reduction in Time Series

نویسندگان

  • MOHSEN NIKPOUR
  • EHSAN NADERNEJAD
  • HOSSEIN ASHTIANI
  • HAMID HASSANPOUR
  • Mohsen Nikpour
  • Ehsan Nadernejad
  • Hossein Ashtiani
چکیده

HAMID HASSANPOUR School of Information Technology and Computer Engineering, Shahrood University of Technology. ___________________________________________________________________________________ Abstract: In this paper, a new method is presented for noise reduction in signal using partial differential equations. In this approach, the signal is initially represented as a matrix. Then using singular values of the matrix, noisy data matrix is divided into signal subspace and noise subspace Since singular vectors are the span bases of the matrix, reducing the effect of noise from the singular vectors and using them in reproducing the matrix enhances the information embedded in the matrix. The proposed technique utilizes the Partial Differential Equations (PDEs) for noise attenuation from the singular vector.The enhanced matrix is finally transformed to a time series vector. To evaluate performance of the proposed method, a number of experiments have been performed on both multi-component and FM signals cluttered with noise. The results indicate that the proposed method outperforms the existing approach, in signal de-noising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

TREND-CYCLE ESTIMATION USING FUZZY TRANSFORM OF HIGHER DEGREE

In this paper, we provide theoretical justification for the application of higher degree fuzzy transform in time series analysis. Under the assumption that a time series can be additively decomposed into a trend-cycle, a seasonal component and a random noise, we demonstrate that the higher degree fuzzy transform technique can be used for the estimation of the trend-cycle, which is one of the ba...

متن کامل

Pervasive white and colored noise removing from magnetotelluric time series

Magnetotellurics is an exploration method which is based on measurement of natural electric and magnetic fields of the Earth and is increasingly used in geological applications, petroleum industry, geothermal sources detection and crust and lithosphere studies. In this work, discrete wavelet transform of magnetotelluric signals was performed. Discrete wavelet transform decomposes signals into c...

متن کامل

IMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY

Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009